Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            SUMMARY Ocean bottom distributed acoustic sensing (OBDAS) is emerging as a new measurement method providing dense, high-fidelity and broad-band seismic observations from fibre-optic cables deployed offshore. In this study, we focus on 35.7 km of a linear telecommunication cable located offshore the Sanriku region, Japan, and apply seismic interferometry to obtain a high-resolution 2-D shear wave velocity (VS) model below the cable. We first show that the processing steps applied to 13 d of continuous data prior to computing cross-correlation functions (CCFs) impact the modal content of surface waves. Continuous data pre-processed with 1-bit normalization allow us to retrieve dispersion images with high Scholte-wave energy between 0.5 and 5 Hz, whereas spatial aliasing dominates dispersion images above 3 Hz for non-1-bit CCFs. Moreover, the number of receiver channels considered to compute dispersion images also greatly affects the resolution of extracted surface-wave modes. To better understand the remarkably rich modal nature of OBDAS data (i.e. up to 30 higher modes in some regions), we simulate Scholte-wave dispersion curves for stepwise linear VS gradient media. For soft marine sediments, simulations confirm that a large number of modes can be generated in gradient media. Based on pre-processing and theoretical considerations, we extract surface wave dispersion curves from 1-bit CCFs spanning over 400 channels (i.e. ∼2 km) along the array and invert them to image the subsurface. The 2-D velocity profile generally exhibits slow shear wave velocities near the ocean floor that gradually increase with depth. Lateral variations are also observed. Flat bathymetry regions, where sediments tend to accumulate, reveal a larger number of Scholte-wave modes and lower shallow velocity layers than regions with steeper bathymetry. We also compare and discuss the velocity model with that from a previous study and finally discuss the combined effect of bathymetry and shallow VS layers on earthquake wavefields. Our results provide new constraints on the shallow submarine structure in the area and further demonstrate the potential of OBDAS for high-resolution offshore geophysical prospecting.more » « less
- 
            Abstract During the past few years, distributed acoustic sensing (DAS) has become an invaluable tool for recording high-fidelity seismic wavefields with great spatiotemporal resolutions. However, the considerable amount of data generated during DAS experiments limits their distribution with the broader scientific community. Such a bottleneck inherently slows down the pursuit of new scientific discoveries in geosciences. Here, we introduce PubDAS—the first large-scale open-source repository where several DAS datasets from multiple experiments are publicly shared. PubDAS currently hosts eight datasets covering a variety of geological settings (e.g., urban centers, underground mines, and seafloor), spanning from several days to several years, offering both continuous and triggered active source recordings, and totaling up to ∼90 TB of data. This article describes these datasets, their metadata, and how to access and download them. Some of these datasets have only been shallowly explored, leaving the door open for new discoveries in Earth sciences and beyond.more » « less
- 
            Abstract Sample return capsules (SRCs) entering Earth’s atmosphere at hypervelocity from interplanetary space are a valuable resource for studying meteor phenomena. The 2023 September 24 arrival of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer SRC provided an unprecedented chance for geophysical observations of a well-characterized source with known parameters, including timing and trajectory. A collaborative effort involving researchers from 16 institutions executed a carefully planned geophysical observational campaign at strategically chosen locations, deploying over 400 ground-based sensors encompassing infrasound, seismic, distributed acoustic sensing, and Global Positioning System technologies. Additionally, balloons equipped with infrasound sensors were launched to capture signals at higher altitudes. This campaign (the largest of its kind so far) yielded a wealth of invaluable data anticipated to fuel scientific inquiry for years to come. The success of the observational campaign is evidenced by the near-universal detection of signals across instruments, both proximal and distal. This paper presents a comprehensive overview of the collective scientific effort, field deployment, and preliminary findings. The early findings have the potential to inform future space missions and terrestrial campaigns, contributing to our understanding of meteoroid interactions with planetary atmospheres. Furthermore, the data set collected during this campaign will improve entry and propagation models and augment the study of atmospheric dynamics and shock phenomena generated by meteoroids and similar sources.more » « less
- 
            Abstract Soft sediment layers can significantly amplify seismic waves from earthquakes. Large dynamic strains can trigger a nonlinear response of shallow soils with low strength, which is characterized by a shift of resonance frequencies, ground motion deamplification, and in some cases, soil liquefaction. We investigate the response of marine sediments during earthquake ground motions recorded along a fiber‐optic cable offshore the Tohoku region, Japan, with distributed acoustic sensing (DAS). We compute AutoCorrelation Functions (ACFs) of the ground motions from 105 earthquakes in different frequency bands. We detect time delays in the ACF waveforms that are converted to relative velocity changes (dv/v).dv/vdrops, which characterize soil nonlinearity, are observed during the strongest ground motions and exhibit a large variability along the cable. This study demonstrates that DAS can be used to infer the dynamic properties of the shallow Earth with an unprecedented spatial resolution.more » « less
- 
            Abstract Distributed Acoustic Sensing (DAS) is a promising technique to improve the rapid detection and characterization of earthquakes. Previous DAS studies mainly focus on the phase information but less on the amplitude information. In this study, we compile earthquake data from two DAS arrays in California, USA, and one submarine array in Sanriku, Japan. We develop a data‐driven method to obtain the first scaling relation between DAS amplitude and earthquake magnitude. Our results reveal that the earthquake amplitudes recorded by DAS in different regions follow a similar scaling relation. The scaling relation can provide a rapid earthquake magnitude estimation and effectively avoid uncertainties caused by the conversion to ground motions. Our results show that the scaling relation appears transferable to new regions with calibrations. The scaling relation highlights the great potential of DAS in earthquake source characterization and early warning.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
